The EU’s Network and Information Security (NIS) Directive

A few days ago the European Parlament has adopted the “Network and Information Security (NIS)” Directive (PE-CONS 26/16 Lex 1683). Together with the recently approved “General Data Protection Regulation”, it could provide the EU marketplace with strong incentives to dramatically enlarge and improve the approach to IT and/or Cyber Security.

For both regulations the timeframe is probably long, at least 2 years, most probably 4, so we should understand the effects of these new regulations likely by 2020. Still the entire ecosystem of IT and/or Cyber Security can only benefit from this interest “from the top”.

New Developments in Cryptography

Wired reports in this article of a recent advance in deployed cryptography by Google.

Last summer the NSA published an advisory about the need to develop and implement new crypto algorithms resistent to quantum computers. Indeed if and when quantum computers will arrive, they will be able to crack easily some of the most fundamental crypto algorithms in use, like RSA and Diffie Hellman. The development of quantum computers is slow, still it continues and it is reasonable to expect that sooner or later, some say in 20 years, they will become reality. Also the development of new crypto algorithms is slow, so the quest for crypto algorithms resistant to quantum computers, also called post-quantum crypto, has already been going on for a few years.

Very recently Google has announced the first real test case of one of these new post-quantum algorithms. Google will deploy to some Chrome Browsers an implementation of the Ring-LWE post-quantum algorithm. This algorithm will be used by the chosen test users, to connect to some Google services. Ring-LWE will be used together with the current crypto algorithms adopted by the browser. Composing the current algorithms with Ring-LWE will guarantee a combined level of security, that is the minimum level of security is that of the strongest algorithm used in the combination. It should be noted that Ring-LWE is a much more recent crypto algorithm compared to the standard ones, and its security has not been established yet to a comparable level of confidence.

If the level of security will not decrease and hopefully just increase, it has to be seen how it will work in practice in particular for performances.

For modern cryptography this two-year Google’s project could become a cornerstone for the development and deployment of post-quantum algorithms.

How Secure are the Products of the IT Security Industry?

In the last months quite a long list of critical vulnerabilities in security products have been made public, for example in products by  FireEye, Kaspersky Lab, McAfee, Sophos, Symantec, Trend Micro etc. Wired just published this article with further information and some comments. These incidents make me think if writing secure code is just too difficult for anyone, or if there is something fundamentally wrong in how the IT industry in general and the IT Security industry in particular, is setup.

Implementing Cryptography right is hard

The security researcher Gal Beniamini has just published here the results of his investigation on the security of Android’s Full Disk Encrytion and found a way to get around it on smartphones and tablets based on the Qualcomm Snapdragon chipset.

The cryptography is ok but some a priori minor implementation details give the possibility to resourceful attackers (like state / nation agencies or well funded organized crime groups) of extracting the secret keys which should be protected in hardware. The knowledge of these keys would allow to decrypt the data in the file systems, the very issue which has been at the basis of the famous Apple vs. FBI case a few months ago.

Software patches have been released by Google and Qualcomm but, as usual with smartphones and tablets, it is not clear how many afflicted devices have received the update or will ever receive it.

In a few words, the problem lies in the interface between the Qualcomm’s hardware module, called the KeyMaster module, which generates, manages and protects the secret keys and the Android Operating System that needs to indirectly access the keys in this case to encrypt and decrypt the file-system. Some KeyMaster’s functions used by Android can be abused to make them reveal the secret keys.

This is another case which proves how it is difficult to implement cryptography right.