IT Security, Human Behaviour and Normalization of Deviance

Bruce Schneier has a quite interesting blog posting (read here) on “Normalization of Deviance”, that is the human behaviour for which errors, warnings and the violation of rules or acceptable actions, becomes the norm.

We all know that in IT Security, people are usually the weakest link. We should also be careful that IT security professionals do not fall into the “Normalization of Deviance” syndrome. I try to summarize it in the extreme as follows: the approach that if something bad has happened, like an intrusion in an IT system, but it did not have real consequences and did not cause real damage, then such kind of events can be ignored from now on.

This is a pretty dangerous human behaviour, but unfortunately, as discussed by Schneier and the sociologists who study this field, quite common.

Writing Software and Security Bugs

Writing software is really hard: not only it is quite difficult to implement the functionalities that customers and final users desire and sometimes require, but it is also extremely difficult to write bug-free software, free from both functionality bugs and security bugs. (And it is not always easy to understand if there is a difference and what is the difference between functionality and security bugs.)

Unfortunately, except that for software developers (and not even for all of them), the fact that writing software is quite hard comes as a surprise or it is just plainly impossible to accept. How much harder could be building an engine than writing the software to pilot an airplane? (Consider moreover that of today most of the work of building an engine is done by software.)

Here I collected a random selection of recent news from The Register in different ways relevant to this subject:

One of the first examples of IoT and security risks

Among IT practitioners there are a lot of ideas and discussions on the “Internet of Things” (IoT) and the security risks associated to them.

If IoT has many positive and useful future developments, the security aspects are very difficult to manage to the point of posing a very big question mark on the idea itself of IoT.

One example is described in the research “House of Keys: Industry-Wide HTTPS Certificate and SSH Key Reuse Endangers Millions of Devices Worldwide” published by SEC Consult, which shows how many hosts, typically home and SOHO routers for internet access, use the same cryptographic keys, which are public and well know, so that anyone can impersonate them and anyone who can intercept their traffic can decrypt it.

Even if the impacts of this vulnerability are probably not very high, it seems extremely difficult to fix, since the new devices will be fixed but the millions already in use will probably never be fixed and will remain active for a few more years.

Even more worrisome is that these are IT devices developed, built and sold by IT companies that should known about IT and IT security. What will happen when billions of devices will be connected to internet (the real IoT) developed, built and sold by non IT companies?

Homomorphic encryption and trusting the Clouds

Homomorphic encryption is an old idea but only in 2009 and the work of Gentry started to have some possible practical applications. Since then there have been quite impressive improvements in the research in this field of cryptography, also due to the need to improve the security of data managed by Cloud systems.

In brief, homomorphic algorithms are cryptographic algorithms that allow to do computations, like sums, multiplications, searches etc., on encrypted data giving encrypted results, without knowing the encryption key.

It should be obvious that these algorithms would be very useful for Clouds’ applications since the owner of the data would be able to use the data remotely by keeping at the same time the data, and the result of the computations, always encrypted in the Cloud application.

Unfortunately homomorphic encryption is not ready yet for general use, but it has just appeared an interesting research paper by Microsoft Reasearch announcing the release of a SEAL (Simple Encryption Arithmetic Library), a library for using homomorphic encryption in bioinformatics, genomic and other research areas.

Cryptography is too risky: should we use something else to secure IT systems?

Obviously the title of this post is provocative, but reading some recent news it is evident that us, IT professionals and IT industry, are not good in managing cryptography. The consequence is that we deploy cryptography in IT products and give a false sense of security to the users. This actually can have worse consequences than if we would not use cryptography at all. I will give just a couple of examples.

This research paper shows how a well-known brand of hard disks has implemented disk encryption in totally faulty ways, to the point that for some disk models hardly any security is provided by the built-in disk encryption functionalities. This is just another of many similar cases, where cryptographic protocols and algorithms are incorrectly implemented so to cancel all or most of the security that they should provide.

Another research paper shows how a well-funded agency or corporation can in practice break the encryption of any data encrypted with the Diffie-Hellmann (DH) key exchange algorithm using keys up to 1024 bits included. Should we be shocked by this news? Not really since already 10 years ago it was known that a key of 1024 bits is too short for DH. Indeed, as per RFC 7525, a 1024 bit DH key offers a security less than a conventional bit security of 80 bits, but again RFC 7525 states that the absolute (legacy) minimum required conventional bit security must be 112 bits, and the current minimum required conventional bit security is 128 bits, that would practically correspond to a 2048 bits DH key. Even if we, IT professionals and IT industry, have known for at least 10 years that 1024 bits DH keys are too short to offer security to the data that they should protect, as of today a too large number of HTTPS websites, VPNs and SSH servers use DH keys of 1024 bits or less (see again the research paper mentioned above).

Unfortunately these are not two isolated examples, recent news are full of similar facts. So I start to wonder if we are good enough to manage cryptography or if we should look into something else to protect IT systems.

The OPM hack and Biometric Authentication

For a long time, biometric authentication has been considered to be the safest and more secure way of identifying users and granting access to IT and non-IT services. It has just one serious drawback: you cannot change the biometric credentials, this is centainly “you”, and if your biometric credentials are stolen, someone could impersonate “you”.

This is what has happened in the OPM hack, the latest news reports that 5.6 million fingerprints of USA federal employees have been stolen, see wired for example. Information about this is scarce and it is not clear which is the format of the stolen fingerprints and how easy it could be to reproduce them. Security experts believe that it will be possible, sooner or later, to reproduce them, it is just a question of time, technology and money.

So what about the persons who have their fingerprints stolen and possibly reproduced by others? What about the security consequences for companies and the state?

How can we use the security of biometrics without the associated risk of impersonation?

A new dress for my website … and thoughts on net “sociality”

Today I released a new version of the UCCI.IT website: a new, responsive, graphic format which has a nice display on all devices, from the standard desktop PC to the smartphones, and a complete revision and re-organization of the material.

This lead me to think again about what it means to be on-line, to divulge information about ourselves to the internet world, which by now is a big part of the real world.

I do not really know the answer to this question, I just see that we keep changing the way in which we use the internet as a tool to communicate. This is related to the introduction of new or improved technologies, but also to the current trends: a few years ago we were all for websites, then for blogs, after that for social networks (which are still really going strong) but recently I found myself going back to the very old, almost pre-internet, email-list technology. I hear friends say that they have almost closed down their website and/or their blog, others who have left the social networks, others who do not use email anymore but only a chat App on their smartphones. It seems to me that we are confused, or, at least, I am confused.

I close with the following personal notes that I wrote a couple of years ago:

Dilemma: air my ideas on the cyberspace, get friends and followers or keep it all to myself and the occasional (voice) chat?

Where does privacy end and community begin?

On Ashley-Madison passwords crack

The Ashley-Madison story just got more interesting with the news that it has been possible to crack the supposedly well encrypted users’ password. As Ars Technica (among others) reports, the account passwords have been managed with bcrypt, and this makes it practically impossible to decrypt.

But the account passwords have also been used to create tokens related to the user’s sessions. In this case the password has been hashed with the broken algorithm MD5. From the token it is then easy to recover a lowercase version of the password, and with just a few tries, in some cases even as few as 256 iterations, it is possible to recover the exact password from the bcrypt encrypted value.

This is again another confirmation that security is not a feature to add somewhere in our IT systems, but a fundamental component of each part of it. Everyone doing IT must at least be security aware . In this case it would have been enough to use the SHA2 hash algorithm instead of MD5 to prevent the cracking of the passwords.

A new Ransomware kind of attack

This describes a new kind of IT ransom which should be much more professional and profitable.

The attacker manages to access some company’s servers, then encrypts the data in the databases but he modifies the DBs access routines to encrypt/decrypt on the fly all data with his own encryption key. In this way for the company all continues to work. He then waits a few months so that all DB backups are encrypted with his keys and at this point deletes the encryption keys from the company’s systems and asks for a ransom to give it back.Notice that backups are unusable because they too are encrypted with the attacker key.

Obviously, strong IT security procedures should prevent and detect this, from off-line testing of backups to intrusion detection.